Alternating Current

- An alternating voltage v = v_msin ωt applied to a resistor R drives a current i = i_msinωt in the resistor, i_m = v_m/R. The current is in phase with the applied voltage.
- For an alternating current i = $i_m sin\omega t$ passing through a resistor R, the average power loss P (averaged over a cycle) due to joule heating is $(1/2)i_m^2 R$. To express it in the same form as the dc power (P = I 2R), a special value of current is used. It is called root mean square (rms) current and is denoted by I:

 $I = i_m/\sqrt{2}$

Similarly, the rms voltage is defined by

 $V = v_m/V2$

We have $P = IV = I^2R$

- An ac voltage $v = v_m \sin \omega t$ applied to a pure inductor L, drives a current in the inductor $i = i_m \sin (\omega t \pi/2)$, where im $= v_m/X_L$.
- $X_L = \omega L$ is called inductive reactance. The current in the inductor lags the voltage by $\pi/2$. The average power supplied to an inductor over one complete cycle is zero.
- An ac voltage $v = v_m \sin \omega t$ applied to a capacitor drives a current in the capacitor: $i = i_m \sin (\omega t + \pi/2)$. Here, $I_m = v_m/X_c$, $X_c = 1/\omega C$ is called capacitive reactance.

The current through the capacitor is $\pi/2$ ahead of the applied voltage. As in the case of inductor, the average power supplied to a capacitorover one complete cycle is zero.

• For a series RLC circuit driven by voltage v = $v_m sin\omega t$, the current isgiven by i = $i_m sin (\omega t + \phi)$ $i_m = v_m / (vR^2 + (X_c - X_L)^2)$

 $\phi = \tan^{-1}[(X_c - X_L)/R]$

 $Z = \sqrt{R^2} + (X_c - X_L)^2$ is called the impedance of the circuit.

The average power loss over a complete cycle is given by

 $P = V I \cos \phi$

The term $\cos\phi$ is called the power factor.

- In a purely inductive or capacitive circuit, $\cos \phi = 0$ and no power is dissipated even though a current is flowing in the circuit. In such cases, current is referred to as a wattless current.
- The phase relationship between current and voltage in an ac circuit can be shown conveniently by representing voltage and current by rotating vectors called phasors. A phasor is a vector which rotates about the origin with angular speed ω. The magnitude of a phasor represents the amplitude or peak value of the quantity (voltage or

current) represented by the phasor.

The analysis of an ac circuit is facilitated by the use of a phasor diagram.

• An interesting characteristic of a series RLC circuit is the phenomenon of resonance. The circuit exhibits resonance, i.e., the amplitude of the current is maximum at the resonant frequency,

 $\omega_0 = (1/vLC)$

The quality factor Q defined by

 $Q = (\omega_0 L/R) = (1/\omega_0 CR)$ is an indicator of the sharpness of the resonance,

the higher value of Q indicating sharper peak in the current.

• A circuit containing an inductor L and a capacitor C (initially charged) with no ac source and no resistors exhibits free oscillations. The charge q of the capacitor satisfies the equation of simple harmonic motion:

 $(d^2q/dt^2) + (1/LC)q = 0$

and therefore, the frequency ω of free oscillation is $\omega_0 = (1/VLC)$

The energy in the system oscillates between the capacitor and the inductor but their sum or the total energy is constant in time.

A transformer consists of an iron core on which are bound a primary coil of N_pturns and a secondary coil of Ns turns.
If the primary coil is connected to an ac source, the primary and secondary voltages are related by

 $V_s = (N_s/N_p)V_p$

and the currents are related by

 $I_s = (N_p/N_s)I_p$

If the secondary coil has a greater number of turns than the primary, the voltage is stepped-up ($V_s > V_p$). This type of arrangement is called a stepup transformer. If the secondary coil has turns less than the primary, we have a stepdown transformer.

Sample Examples

• A sinusoidal voltage of peak value 283 V and frequency 50 Hz is applied to a series LCR circuit in which R = 3 Ω , L = 25.48 mH, and C = 796 μ F. Find (a) the impedance of the circuit; (b) the phase difference between the voltage across the source and the current; (c) the power dissipated in the circuit; and (d) the power factor.

Solution

(a) To find the impedance of the circuit, we first calculate XL and XC.

 $X_L = 2 \pi v L$

$$= 2 \times 3.14 \times 50 \times 25.48 \times 10^{-3} \Omega = 8 \Omega$$

 $X_{c} = (1/2 \pi v C)$

$$= [1/(3.14*2*50*796*10^{-6})]$$

=4Ω

 $Z = \sqrt{R^2 + (X_c - X_L)^2} = \sqrt{9 + (8 - 4)^2} = 5 \Omega$

 $\phi = \tan^{-1}[(X_c - X_L)/R]$ $\tan^{-1}[(4 - 8)/3]$ = -53.1 °

Since ϕ is negative, the current in the circuit lags the voltage across the source.

(c) The power dissipated in the circuit is

 $P = I^2 R$

 $I = i_m / \sqrt{2} = 283 / 5 \sqrt{2} = 40 \text{ A}$

Therefore, $P = (40A)2 \times 3\Omega = 4800W$

(d) Power factor = $\cos \phi = \cos 53.1^\circ = 0.6$